$R_{\rm int} = 0.034$

 $0.32 \times 0.17 \times 0.06 \text{ mm}$

25915 measured reflections

4048 independent reflections

3844 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[μ -5,5'-iminoditetrazolato- $\kappa^3 N.N':N''$ -bis[triaguazinc(II)]] bis[[triaguazinc(II)]-*µ*-5,5'-iminoditetrazolato- $\kappa^3 N, N': N''$] dihydrate]

Zhao-Qing Liu,^a Wen Dong^a and Seik Weng Ng^{b*}

^aSchool of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Received 29 October 2007; accepted 4 November 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean $\sigma(N-N) = 0.003$ Å; R factor = 0.020; wR factor = 0.054; data-to-parameter ratio = 11.7.

The title compound, $\{[Zn_2(C_2HN_9)_2(H_2O)_6][Zn_2(C_2HN_9)_2 (H_2O)_6]$ ·2H₂O}_n, consists of one dinuclear $[Zn(C_2HN_9) (H_2O)_3]_2$ molecule, in which the two $C_2HN_9^-$ monoanions each N,N'-chelate a $[Zn(H_2O)_3]$ unit while using a third N atom to bind to the other triaquazinc unit. In the second $[Zn(C_2HN_9)(H_2O)_3]$ unit, the monoanion similarly N,N'chelates a triaquazinc unit, but the bridging interaction furnishes a zigzag chain structure. For both Zn centres, a mer-ZnN₃O₃ octahedral coordination arises. A network of $N-H\cdots N$, $O-H\cdots N$ and $O-H\cdots O$ hydrogen bonds helps to establish the structure.

Related literature

For background literature on the ligand, see: Jones et al. (2006); Nedel'ko et al. (2005); Marecek et al. (2004). For related structures, see Klapötke et al. (2006); Manfred et al. (2005). For related literature, see: Allen (2002).

Experimental

Crystal data

[Zn₂(C₂HN₉)₂(H₂O)₆]- $[Zn_2(C_2HN_9)_2(H_2O)_6]\cdot 2H_2O$ $M_r = 1118.18$ Orthorhombic, P21212 a = 10.1201 (1) Å

```
b = 23.7418 (3) Å
c = 7.3346 (1) \text{ Å}
V = 1762.28 (4) Å<sup>3</sup>
Z = 2
Mo K\alpha radiation
```

$\mu = 2.81 \text{ mm}^{-1}$ T = 295 (2) K

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min}=0.581,\;T_{\rm max}=0.850$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.020$ All H-atom parameters refined $wR(F^2) = 0.054$ S = 1.014048 reflections 345 parameters 22 restraints

$\Delta \rho_{\rm max} = 0.28 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.43 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), with 1710 Friedel pairs Flack parameter: 0.026 (8)

Table 1

Selected bond lengths (Å).

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Zn1-O2	2.122 (2)	Zn2-O4	2.130 (2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Zn1-O1	2.148 (2)	Zn2-O5	2.096 (1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Zn1-O3	2.069 (2)	Zn2-O6	2.132 (2)
Zn1-N4 ⁱ 2.199 (2) Zn2-N11 ⁱⁱ 2.152 (2) Zn1-N9 2.125 (2) Zn2-N18 2.113 (2)	Zn1-N1	2.140 (2)	Zn2-N10	2.146 (2)
Zn1-N9 2.125 (2) Zn2-N18 2.113 (2	Zn1-N4 ⁱ	2.199 (2)	Zn2-N11 ⁱⁱ	2.152 (2)
	Zn1-N9	2.125 (2)	Zn2-N18	2.113 (2)

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1$; (ii) -x + 1, -y + 2, z.

Та	ble	2			
тт	1		1	1	

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N5-H5···N2 ⁱⁱⁱ	0.84 (1)	1.94 (1)	2.773 (2)	171 (3)
$N14-H14\cdots N16^{iv}$	0.82(1)	2.23 (1)	3.049 (2)	176 (2)
$O1 - H11 \cdots N13^{iii}$	0.85 (1)	1.91 (1)	2.754 (2)	175 (2)
$O1-H12\cdots N15^v$	0.85 (1)	2.14 (2)	2.915 (2)	153 (2)
$O2-H21\cdots O6^{iv}$	0.84(1)	2.22 (1)	3.053 (2)	172 (4)
$O2-H22\cdots O8^{iii}$	0.84 (1)	1.96 (1)	2.796 (2)	173 (3)
O3-H31···N15	0.85 (1)	2.07 (2)	2.835 (3)	148 (3)
$O3-H32\cdots N17^{iv}$	0.85 (1)	1.96 (1)	2.776 (2)	160 (3)
O4-H41···N3	0.86(1)	2.00(1)	2.847 (2)	169 (3)
$O4-H42\cdots N6^{i}$	0.86(1)	2.20(2)	3.000 (3)	155 (3)
$O5-H51\cdots O1^{iii}$	0.82(1)	2.19 (1)	3.000 (2)	170 (2)
$O5-H52 \cdot \cdot \cdot O7^{vi}$	0.83 (1)	1.96 (1)	2.781 (2)	169 (3)
$O6-H61\cdots N6^{iv}$	0.86 (1)	2.20(1)	3.042 (3)	167 (3)
$O6-H62 \cdot \cdot \cdot N7^{vii}$	0.86(1)	1.84 (1)	2.701 (2)	176 (3)
O7-H7···N8 ^{viii}	0.84(1)	2.12 (1)	2.959 (2)	179 (3)
$O8-H8\cdots N12^{ix}$	0.84 (1)	2.15 (1)	2.974 (2)	166 (4)

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1$; (iii) $x - \frac{1}{2}, -y + \frac{3}{2}, -z + 1$; (iv) $x + \frac{1}{2}, -y + \frac{3}{2}, -z$; (v) x, y, z + 1; (vi) x - 1, y, z; (vii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z$; (viii) -z; (ix) -x + 2, -y + 2, z.

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2007).

The authors thank Guangzhou University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2619).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2006). *APEX2* (Version 1.2A) and *SAINT* (Version 7.23A). Bruker AXS Inc., Madison, winconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Jones, D. E., Armstrong, K., Parekunnel, T. & Kwok, Q. S. M. (2006). J. Therm. Anal. Calorim. 83, 641–649.
- Klapötke, T. M., Mayer, P., Polborn, K., Stierstorfer, J. & Wiegand, J. J. (2006). New Trends in Research of Energetic Materials, Proceedings of the Seminar, Pardubice, Czech Republic, April 2006, pp. 641–651.
- Manfred, F., Galvez-Ruiz, J. C., Klapötke, T. M., Mayer, P., Weber, B. & Wiegand, J. J. (2005). *Inorg. Chem.* 44, 8044–8052.
- Marecek, P., Dudek, K. & Liska, F. (2004). New Trends in Research of Energetic Materials, Proceedings of the Seminar, Pardubice, Czech Republic, pp. 566–569.
- Nedel'ko, V. V., Shastin, A. V., Korsunskii, B. L., Chukanov, N. V., Larikova, T. S. & Kazakov, A. I. (2005). *Russ. Chem. Bull.* 54, 1710–1714.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Westrip, S. P. (2007). publCIF. In preparation.

supplementary materials

Acta Cryst. (2007). E63, m2943-m2944 [doi:10.1107/S160053680705578X]

catena-Poly[[μ -5,5'-iminoditetrazolato- $\kappa^3 N, N': N''$ -bis[triaquazinc(II)]] bis[[triaquazinc(II)]- μ -5,5'-iminoditetrazolato- $\kappa^3 N, N': N''$] dihydrate]

Z.-Q. Liu, W. Dong and S. W. Ng

Comment

Bis(5-tetrazolyl)amine is a high-nitrogen fuel; see Jones *et al.* (2006). Its synthesis in four steps, starting from cyanic chloride, is reported by Nedel'ko *et al.* (2005). The synthesis from sodium azide and sodium dicyanamide in water is reported by Marecek *et al.* (2004). For the crystal structures of the copper complexes, see Klapötke *et al.* (2006); Manfred *et al.* (2005). The structures of several metal derivatives have been deposited with the Cambridge Structural Database (Version 5.28, November 2006; Allen, 2002) as private communications. The title zinc derivative, (I), (Fig. 1) is readily synthesized from sodium azide, sodium dicyanamide and zinc chloride in a hydothermal reaction.

The complex structure of (I) consists of one dinuclear $[Zn(C_2HN_9)_2(H_2O)_3]_2$ moiety in which the two $C_2HN_9^-$ monoanions each *N*,*N*⁻chelate to a $Zn(H_2O)_3$ triaquazinc unit while using its third nitrogen atom to bind to the other triaquazinc unit. In the second $Zn(C_2HN_9)_2(H_2O)_3$ unit, the monoanion similarly *N*,*N*⁻chelates to a triaquazinc unit, but the bridging interaction furnishes a zigzag chain structure (Fig. 1) For both zinc centres, a *mer*-ZnN₃O₃ octahedral coordination arises (Table 1). Two uncoordinated water molecules complete the structure. A complex network of N—H···N, O—H···N and O—H···O hydrogen bonds helps to establish the structure (Table 2).

Experimental

Zinc chloride (40.9 mg, 0.3 mmol), sodium azide (39.0 mg, 0.6 mmol), sodium dicyanamide (26.7 mg, 0.3 mmol) and water (10 ml) were heated in a 25-ml Teflon-lined, stainless-steel Parr bom at 433 K for 72 h. The bomb was then was cooled to room temperature at 10 K h^{-1} ; the colourless blocks of (I) that formed were separated manually.

Refinement

All hydrogen atoms were located in a difference Fourier map, and were refined with distance restraints of O-H = N-H = 0.85 (1) Å; for the water H-atoms, the H···H distances were restrained to 1.39 (1) Å. Their U_{iso} values were refined.

Figures

Fig. 1. View of a fragment of (I) depicting the coordination geometries of the two zinc atoms; displacement ellipsoids are drawn at the 70% probability level, and H atoms as spheres of arbitrary radius. Symmetry codes as in Table 1.

catena-poly[μ -5,5'-iminoditetrazolato- $\kappa^3 N$,N':N''-bis[triaquazinc(II)] bis[[triaquazinc(II)]- μ -5,5'-iminoditet-razolato- $\kappa^3 N$,N':N''] dihydrate]

Crystal data	
$[Zn_2(C_2HN_9)_2(H_2O)_6][Zn_2(C_2HN_9)_2(H_2O)_6] \cdot 2H_2O$	$F_{000} = 1128$
$M_r = 1118.18$	$D_{\rm x} = 2.107 {\rm Mg m}^{-3}$
Orthorhombic, $P2_12_12$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2 2ab	Cell parameters from 9121 reflections
a = 10.1201 (1) Å	$\theta = 1.7 - 27.5^{\circ}$
b = 23.7418 (3) Å	$\mu = 2.81 \text{ mm}^{-1}$
c = 7.3346(1) Å	T = 295 (2) K
$V = 1762.28 (4) \text{ Å}^3$	Block, colourless
Z = 2	$0.32 \times 0.17 \times 0.06 \text{ mm}$

Data collection

Bruker APEXII CCD diffractometer	4048 independent reflections
Radiation source: fine-focus sealed tube	3844 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.034$
T = 295(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
φ and ω scans	$\theta_{\min} = 1.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -13 \rightarrow 13$
$T_{\min} = 0.581, T_{\max} = 0.850$	$k = -30 \rightarrow 30$
25915 measured reflections	$l = -9 \rightarrow 8$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	All H-atom parameters refined
$R[F^2 > 2\sigma(F^2)] = 0.020$	$w = 1/[\sigma^2(F_o^2) + (0.0363P)^2P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.054$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.01	$\Delta \rho_{max} = 0.29 \text{ e } \text{\AA}^{-3}$
4048 reflections	$\Delta \rho_{\rm min} = -0.43 \text{ e } \text{\AA}^{-3}$
345 parameters	Extinction correction: none
22 restraints	Absolute structure: Flack (1983), with 1710 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.026 (8)

Secondary atom site location: difference Fourier map

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Zn1	0.49499 (2)	0.66550(1)	0.47415 (3)	0.01664 (6)
Zn2	0.36506 (2)	0.93580(1)	0.01708 (3)	0.01744 (7)
01	0.4922 (2)	0.6553 (1)	0.7651 (2)	0.0220 (3)
O2	0.6009 (2)	0.5884 (1)	0.4700 (3)	0.0289 (4)
03	0.5257 (2)	0.6696 (1)	0.1956 (2)	0.0274 (4)
O4	0.3686 (2)	0.9250(1)	0.3053 (2)	0.0290 (4)
05	0.1591 (1)	0.9271 (1)	0.0271 (3)	0.0296 (4)
O6	0.3553 (2)	0.9439 (1)	-0.2721 (2)	0.0250 (3)
07	1.0000	1.0000	-0.1726 (3)	0.0292 (5)
08	1.0000	1.0000	0.3201 (3)	0.0287 (5)
N1	0.3582 (1)	0.7342 (1)	0.4689 (3)	0.0199 (4)
N2	0.3877 (2)	0.7884 (1)	0.4371 (3)	0.0286 (5)
N3	0.2826 (2)	0.8193 (1)	0.4451 (3)	0.0285 (5)
N4	0.1772 (2)	0.7861 (1)	0.4804 (3)	0.0194 (4)
N5	0.1544 (2)	0.6870 (1)	0.5283 (3)	0.0263 (4)
N6	0.1094 (2)	0.5914 (1)	0.4621 (3)	0.0265 (4)
N7	0.1864 (2)	0.5479 (1)	0.4106 (3)	0.0272 (4)
N8	0.3081 (2)	0.5631 (1)	0.3983 (3)	0.0240 (4)
N9	0.3177 (2)	0.6185 (1)	0.4429 (3)	0.0192 (4)
N10	0.5769 (2)	0.9319 (1)	0.0183 (3)	0.0175 (3)
N11	0.6602 (2)	0.9751 (1)	0.0585 (2)	0.0186 (4)
N12	0.7751 (2)	0.9552 (1)	0.1032 (3)	0.0225 (4)
N13	0.7735 (2)	0.8986 (1)	0.0949 (3)	0.0223 (4)
N14	0.6126 (2)	0.8310(1)	0.0127 (3)	0.0262 (4)
N15	0.4512 (2)	0.7600(1)	-0.0351 (3)	0.0270 (4)
N16	0.3182 (2)	0.7617 (1)	-0.0593 (3)	0.0277 (5)
N17	0.2775 (2)	0.8133 (1)	-0.0559 (3)	0.0269 (4)
N18	0.3817 (2)	0.8482 (1)	-0.0277 (3)	0.0215 (4)
C1	0.22764 (2)	0.7341 (1)	0.4936 (3)	0.0168 (4)
C2	0.19376 (2)	0.6338 (1)	0.4795 (3)	0.0191 (4)
C3	0.65014 (2)	0.8860 (1)	0.0409 (3)	0.0178 (4)
C4	0.48487 (2)	0.8141 (1)	-0.0158 (3)	0.0188 (4)
Н5	0.073 (1)	0.691 (1)	0.543 (4)	0.03 (1)*
H14	0.671 (2)	0.807 (1)	0.025 (3)	0.02 (1)*
H11	0.423 (2)	0.641 (1)	0.810 (4)	0.04 (1)*
H12	0.505 (3)	0.688 (1)	0.807 (4)	0.05 (1)*
H21	0.667 (2)	0.580 (1)	0.406 (4)	0.08 (1)*
H22	0.571 (2)	0.560 (1)	0.526 (3)	0.04 (1)*
H31	0.496 (3)	0.702 (1)	0.167 (5)	0.08 (1)*
H32	0.608 (1)	0.669 (1)	0.173 (4)	0.05 (1)*
H41	0.333 (3)	0.894 (1)	0.343 (5)	0.09 (2)*
H42	0.448 (2)	0.927 (2)	0.345 (6)	0.11 (2)*
H51	0.119 (2)	0.905 (1)	0.095 (3)	0.04 (1)*
H52	0.112 (2)	0.946 (1)	-0.043 (3)	0.03 (1)*
H61	0.429 (2)	0.931 (1)	-0.310 (5)	0.10 (2)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supplementary materials

H62	0.345 (3)	0.977 (1)	-0.320 (4)	0.04 (1)*
H7	1.055 (2)	1.018 (1)	-0.236 (4)	0.05 (1)*
H8	1.066 (2)	1.007 (2)	0.253 (4)	0.06 (1)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.0119(1)	0.0156(1)	0.0225 (1)	0.0007(1)	0.0007(1)	0.0002 (1)
Zn2	0.0152 (1)	0.0136(1)	0.0236 (1)	0.0002(1)	-0.0010(1)	0.0002 (1)
01	0.021 (1)	0.021 (1)	0.025 (1)	-0.005 (1)	0.004 (1)	-0.001 (1)
O2	0.022 (1)	0.019(1)	0.046(1)	0.004 (1)	0.006(1)	0.002(1)
O3	0.023 (1)	0.033 (1)	0.026(1)	0.005 (1)	0.005 (1)	0.003 (1)
O4	0.034 (1)	0.029(1)	0.024 (1)	-0.005 (1)	0.000(1)	0.005 (1)
O5	0.016 (1)	0.024 (1)	0.049(1)	-0.002(1)	0.001 (1)	0.007(1)
O6	0.029(1)	0.022 (1)	0.023 (1)	0.005 (7)	-0.001 (1)	0.003 (1)
07	0.024 (1)	0.032 (1)	0.031 (1)	-0.004 (1)	0.000	0.000
O8	0.025 (1)	0.031 (1)	0.030(1)	-0.003 (1)	0.000	0.000
N1	0.011 (1)	0.015 (1)	0.033 (1)	0.000(1)	0.001 (1)	0.000(1)
N2	0.014 (1)	0.016(1)	0.056 (1)	0.001 (1)	0.003 (1)	0.004 (1)
N3	0.014 (1)	0.018 (1)	0.053 (1)	0.000(1)	0.004 (1)	0.006(1)
N4	0.013 (1)	0.015 (1)	0.031 (1)	-0.001 (1)	0.000(1)	0.001 (1)
N5	0.011 (1)	0.015 (1)	0.053 (1)	0.002 (1)	0.008 (1)	-0.001 (1)
N6	0.016 (1)	0.019(1)	0.045 (1)	-0.002 (1)	-0.001 (1)	-0.002 (1)
N7	0.019 (1)	0.019(1)	0.044 (1)	-0.002 (1)	-0.001 (1)	-0.009(1)
N8	0.020(1)	0.019(1)	0.033 (1)	0.000(1)	0.001 (1)	-0.006(1)
N9	0.014 (1)	0.015 (1)	0.029(1)	0.001 (1)	0.000(1)	-0.004 (1)
N10	0.015 (1)	0.012 (1)	0.026 (1)	-0.001 (1)	-0.002(1)	0.000(1)
N11	0.015 (1)	0.015 (1)	0.025 (1)	0.000(1)	-0.002 (1)	0.001 (1)
N12	0.018 (1)	0.016(1)	0.034 (1)	0.001 (1)	-0.006(1)	0.002(1)
N13	0.016(1)	0.016(1)	0.035 (1)	-0.001 (1)	-0.005 (1)	0.001 (1)
N14	0.015 (1)	0.012 (1)	0.052 (1)	0.002 (1)	-0.008 (1)	-0.002(1)
N15	0.021 (1)	0.014 (1)	0.046 (1)	0.000(1)	-0.006(1)	-0.001 (1)
N16	0.019(1)	0.014 (1)	0.050(1)	-0.002(1)	-0.007(1)	-0.002(1)
N17	0.019(1)	0.018 (1)	0.044 (1)	-0.003 (1)	-0.007(1)	-0.002(1)
N18	0.018 (1)	0.017 (1)	0.030(1)	-0.001 (1)	-0.004 (1)	-0.002(1)
C1	0.011 (1)	0.017 (1)	0.022 (1)	0.002 (1)	0.000(1)	0.000(1)
C2	0.014 (1)	0.017 (1)	0.026 (1)	0.001 (1)	0.001 (1)	0.000(1)
C3	0.016(1)	0.016(1)	0.022 (1)	0.000(1)	-0.002 (1)	0.000(1)
C4	0.018 (1)	0.014 (1)	0.024 (1)	-0.001 (1)	-0.003 (1)	-0.001 (1)

Geometric parameters (Å, °)

Zn1—O2	2.122 (2)	N10—N11	1.360 (2)
Zn1—O1	2.148 (2)	N11—N12	1.297 (2)
Zn1—O3	2.069 (2)	N12—N13	1.345 (2)
Zn1—N1	2.140 (2)	N13—C3	1.343 (3)
Zn1—N4 ⁱ	2.199 (2)	N14—C4	1.369 (2)
Zn1—N9	2.125 (2)	N14—C3	1.375 (3)

Zn2—04	2.130 (2)	N15—C4	1.336 (2)
Zn2—O5	2.096 (1)	N15—N16	1.359 (2)
Zn2—O6	2.132 (2)	N16—N17	1.291 (2)
Zn2—N10	2.146 (2)	N17—N18	1.357 (2)
Zn2—N11 ⁱⁱ	2.152 (2)	N18—C4	1.324 (2)
Zn2—N18	2.113 (2)	O1—H11	0.85(1)
N1—C1	1.334 (2)	O1—H12	0.85(1)
N1—N2	1.341 (2)	O2—H21	0.84(1)
N2—N3	1.293 (2)	O2—H22	0.84(1)
N3—N4	1.351 (2)	O3—H31	0.85(1)
N4—C1	1.338 (2)	O3—H32	0.85(1)
N5—C1	1.366 (2)	O4—H41	0.86(1)
N5—C2	1.371 (2)	O4—H42	0.86(1)
N6—C2	1.326 (3)	O5—H51	0.82(1)
N6—N7	1.350 (2)	O5—H52	0.83 (1)
N7—N8	1.287 (3)	O6—H61	0.86(1)
N8—N9	1.360 (2)	O6—H62	0.86(1)
N9—C2	1.333 (2)	O7—H7	0.84 (1)
N10—C3	1.329 (2)	O8—H8	0.84 (1)
O3—Zn1—O2	87.17 (7)	N11—N10—Zn2	126.0 (2)
O3—Zn1—N9	92.61 (7)	N12—N11—N10	109.6 (2)
O2—Zn1—N9	88.41 (6)	N12—N11—Zn2 ⁱⁱ	120.1 (1)
O3—Zn1—N1	92.48 (7)	N10—N11—Zn2 ⁱⁱ	129.6 (1)
O2—Zn1—N1	169.88 (6)	N11—N12—N13	110.0 (2)
N9—Zn1—N1	81.50 (6)	C3—N13—N12	104.3 (2)
O3—Zn1—O1	171.28 (6)	C4—N14—C3	124.2 (2)
O2—Zn1—O1	85.62 (7)	C4—N15—N16	103.7 (2)
N9—Zn1—O1	92.09 (6)	N17—N16—N15	110.1 (2)
N1—Zn1—O1	95.47 (7)	N16—N17—N18	109.5 (2)
O3—Zn1—N4 ⁱ	89.94 (7)	C4—N18—N17	104.5 (2)
O2—Zn1—N4 ⁱ	91.70 (6)	C4—N18—Zn2	130.8 (1)
N9—Zn1—N4 ⁱ	177.45 (7)	N17—N18—Zn2	124.3 (1)
N1—Zn1—N4 ⁱ	98.42 (6)	N1—C1—N4	111.5 (2)
O1—Zn1—N4 ⁱ	85.38 (7)	N1—C1—N5	124.3 (2)
O5—Zn2—N18	89.26 (6)	N4—C1—N5	124.2 (2)
O5—Zn2—O4	88.29 (7)	N6—C2—N9	112.3 (2)
N18—Zn2—O4	91.94 (7)	N6—C2—N5	122.5 (2)
O5—Zn2—O6	89.87 (7)	N9—C2—N5	125.2 (2)
N18—Zn2—O6	86.46 (7)	N10—C3—N13	111.9 (2)
O4—Zn2—O6	177.58 (6)	N10—C3—N14	127.3 (2)
O5—Zn2—N10	171.56 (6)	N13—C3—N14	120.8 (2)
N18—Zn2—N10	83.05 (6)	N18—C4—N15	112.3 (2)
O4—Zn2—N10	88.49 (7)	N18—C4—N14	125.1 (2)
O6—Zn2—N10	93.12 (7)	N15—C4—N14	122.6 (2)
O5—Zn2—N11 ⁱⁱ	88.51 (6)	Zn1—O1—H11	116 (2)
N18—Zn2—N11 ⁱⁱ	177.60 (6)	Zn1—O1—H12	105 (2)

supplementary materials

O4—Zn2—N11 ⁱⁱ	88.90 (7)	H11—O1—H12	112 (2)
O6—Zn2—N11 ⁱⁱ	92.63 (6)	Zn1—O2—H21	128 (2)
N10—Zn2—N11 ⁱⁱ	99.22 (6)	Zn1—O2—H22	120 (2)
C1—N1—N2	104.2 (2)	H21—O2—H22	111 (2)
C1—N1—Zn1	129.6 (1)	Zn1—O3—H31	103 (3)
N2—N1—Zn1	126.2 (1)	Zn1—O3—H32	110 (2)
N3—N2—N1	110.6 (2)	H31—O3—H32	108 (2)
N2—N3—N4	109.2 (2)	Zn2—O4—H41	114 (3)
C1—N4—N3	104.5 (2)	Zn2—O4—H42	111 (3)
C1—N4—Zn1 ⁱⁱⁱ	142.3 (1)	H41—O4—H42	109 (2)
N3—N4—Zn1 ⁱⁱⁱ	112.7 (1)	Zn2—O5—H51	125 (2)
C1—N5—C2	123.2 (2)	Zn2—O5—H52	120 (2)
C2—N6—N7	103.7 (2)	H51—O5—H52	116 (2)
N8—N7—N6	110.9 (2)	Zn2—O6—H61	104 (3)
N7—N8—N9	108.9 (2)	Zn2—O6—H62	120 (2)
C2—N9—N8	104.2 (2)	H61—O6—H62	108 (2)
C2—N9—Zn1	129.0 (1)	C1—N5—H5	118 (2)
N8—N9—Zn1	126.4 (1)	C2—N5—H5	115 (2)
C3—N10—N11	104.3 (2)	C4—N14—H14	119 (2)
C3—N10—Zn2	126.4 (1)	C3—N14—H14	116 (2)
O3—Zn1—N1—C1	109.4 (2)	N16—N17—N18—C4	0.3 (3)
O2—Zn1—N1—C1	21.6 (6)	N16—N17—N18—Zn2	-173.2 (2)
N9—Zn1—N1—C1	17.11 (19)	O5—Zn2—N18—C4	-164.9 (2)
01—Zn1—N1—C1	-74.2 (2)	O4—Zn2—N18—C4	-76.6 (2)
$N4^{i}$ —Zn1—N1—C1	-160.3 (2)	O6—Zn2—N18—C4	105.2 (2)
O3—Zn1—N1—N2	-69.9 (2)	N10-Zn2-N18-C4	11.6 (2)
O2—Zn1—N1—N2	-157.8 (4)	O5—Zn2—N18—N17	6.7 (2)
N9—Zn1—N1—N2	-162.2 (2)	O4—Zn2—N18—N17	95.0 (2)
O1—Zn1—N1—N2	106.5 (2)	O6—Zn2—N18—N17	-83.2 (2)
N4 ⁱ —Zn1—N1—N2	20.4 (2)	N10-Zn2-N18-N17	-176.8 (2)
C1—N1—N2—N3	1.1 (3)	N2—N1—C1—N4	-0.8 (3)
Zn1—N1—N2—N3	-179.5 (2)	Zn1—N1—C1—N4	179.8 (2)
N1—N2—N3—N4	-1.0 (3)	N2—N1—C1—N5	179.3 (2)
N2—N3—N4—C1	0.4 (3)	Zn1—N1—C1—N5	-0.2 (3)
N2—N3—N4—Zn1 ⁱⁱⁱ	174.0 (2)	N3—N4—C1—N1	0.3 (3)
C2—N6—N7—N8	0.1 (3)	Zn1 ⁱⁱⁱ —N4—C1—N1	-170.0 (2)
N6—N7—N8—N9	0.3 (3)	N3—N4—C1—N5	-179.8 (2)
N7—N8—N9—C2	-0.6 (2)	Zn1 ⁱⁱⁱ —N4—C1—N5	9.9 (4)
N7—N8—N9—Zn1	173.3 (2)	C2—N5—C1—N1	-24.1 (4)
O3—Zn1—N9—C2	-112.6 (2)	C2—N5—C1—N4	156.0 (2)
O2—Zn1—N9—C2	160.3 (2)	N7—N6—C2—N9	-0.5 (3)
N1—Zn1—N9—C2	-20.5 (2)	N7—N6—C2—N5	179.0 (2)
O1—Zn1—N9—C2	74.7 (2)	N8—N9—C2—N6	0.7 (3)
O3—Zn1—N9—N8	75.0 (2)	Zn1—N9—C2—N6	-173.0 (2)
O2—Zn1—N9—N8	-12.1 (2)	N8—N9—C2—N5	-178.8 (2)
N1—Zn1—N9—N8	167.1 (2)	Zn1—N9—C2—N5	7.5 (3)
O1—Zn1—N9—N8	-97.7 (2)	C1—N5—C2—N6	-159.0 (2)

N18—Zn2—N10—C3	-17.7 (2)	C1—N5—C2—N9	20.4 (4)
O4—Zn2—N10—C3	74.4 (2)	N11—N10—C3—N13	0.8 (2)
O6—Zn2—N10—C3	-103.8 (2)	Zn2—N10—C3—N13	-159.4 (2)
N11 ⁱⁱ —Zn2—N10—C3	163.0 (2)	N11—N10—C3—N14	-178.3 (2)
N18—Zn2—N10—N11	-173.7 (2)	Zn2—N10—C3—N14	21.6 (3)
O4—Zn2—N10—N11	-81.6 (2)	N12-N13-C3-N10	-0.7 (3)
O6—Zn2—N10—N11	100.3 (2)	N12—N13—C3—N14	178.4 (2)
N11 ⁱⁱ —Zn2—N10—N11	7.1 (2)	C4—N14—C3—N10	-11.1 (4)
C3—N10—N11—N12	-0.5 (2)	C4—N14—C3—N13	169.9 (2)
Zn2—N10—N11—N12	159.7 (2)	N17—N18—C4—N15	0.1 (3)
C3—N10—N11—Zn2 ⁱⁱ	169.1 (2)	Zn2—N18—C4—N15	172.9 (2)
Zn2—N10—N11—Zn2 ⁱⁱ	-30.7 (2)	N17—N18—C4—N14	180.0 (2)
N10-N11-N12-N13	0.1 (2)	Zn2—N18—C4—N14	-7.1 (4)
Zn2 ⁱⁱ —N11—N12—N13	-170.7 (1)	N16—N15—C4—N18	-0.4 (3)
N11—N12—N13—C3	0.4 (2)	N16—N15—C4—N14	179.7 (2)
C4—N15—N16—N17	0.6 (3)	C3—N14—C4—N18	3.0 (4)
N15—N16—N17—N18	-0.5 (3)	C3—N14—C4—N15	-177.1 (2)
~			

Symmetry codes: (i) x+1/2, -y+3/2, -z+1; (ii) -x+1, -y+2, z; (iii) x-1/2, -y+3/2, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N5—H5…N2 ⁱⁱⁱ	0.84 (1)	1.94 (1)	2.773 (2)	171 (3)
N14—H14…N16 ^{iv}	0.82 (1)	2.23 (1)	3.049 (2)	176 (2)
O1—H11···N13 ⁱⁱⁱ	0.85 (1)	1.91 (1)	2.754 (2)	175 (2)
O1—H12…N15 ^v	0.85 (1)	2.14 (2)	2.915 (2)	153 (2)
O2—H21···O6 ^{iv}	0.84 (1)	2.22 (1)	3.053 (2)	172 (4)
O2—H22···O8 ⁱⁱⁱ	0.84 (1)	1.96 (1)	2.796 (2)	173 (3)
O3—H31…N15	0.85 (1)	2.07 (2)	2.835 (3)	148 (3)
O3—H32…N17 ^{iv}	0.85 (1)	1.96 (1)	2.776 (2)	160 (3)
O4—H41…N3	0.86(1)	2.00 (1)	2.847 (2)	169 (3)
O4—H42···N6 ⁱ	0.86 (1)	2.20 (2)	3.000 (3)	155 (3)
O5—H51…O1 ⁱⁱⁱ	0.82 (1)	2.19 (1)	3.000 (2)	170 (2)
O5—H52…O7 ^{vi}	0.83 (1)	1.96 (1)	2.781 (2)	169 (3)
O6—H61…N6 ^{iv}	0.86 (1)	2.20 (1)	3.042 (3)	167 (3)
O6—H62…N7 ^{vii}	0.86 (1)	1.84 (1)	2.701 (2)	176 (3)
O7—H7…N8 ^{viii}	0.84 (1)	2.12 (1)	2.959 (2)	179 (3)
O8—H8…N12 ^{ix}	0.84 (1)	2.15 (1)	2.974 (2)	166 (4)

Symmetry codes: (iii) *x*-1/2, -*y*+3/2, -*z*+1; (iv) *x*+1/2, -*y*+3/2, -*z*; (v) *x*, *y*, *z*+1; (i) *x*+1/2, -*y*+3/2, -*z*+1; (vi) *x*-1, *y*, *z*; (vii) -*x*+1/2, *y*+1/2, -*z*; (viii) -*x*+3/2, *y*+1/2, -*z*; (ix) -*x*+2, -*y*+2, *z*.

